Tool Preferences in Agentic LLMs are Unreliable

Kazem Faghih™, Wenxiao Wang*, Yize Cheng®*, Siddhant Bharti, Gaurang
Sriramanan, Sriram Balasubramanian, Parsa Hosseini, and Soheil Feizi
EMNLP 202522, s *Equal Contribution  Correspondence to: kazemf@umd.edu &

Suzhou, China | EFIEUJJ‘I‘I

UNIVERSITY OF

MARYLAND

Motivation and Introduction Our Setup
 LLMs have demonstrated the ability to use a wide range of . We adapt from the Berkely query: <a user query>
external tools. But in the eyes of an LLM, a tool is simpl : : tools: |
d y ’ p y FunCt|On Calllng Leaderboard o tool (name=<name>, description=<description>,
EXPOS€d as: (BFCL), where a single-turn & 95575
* Description: Ar‘]descrlptlo: of Wl:lat the tool does h contains a query and a single .o & e e
e Args: JSON schema specitying the input areuments to the .
gl k . p h y g p g d . tOOI for that query. We Create ltc.Joi(name=<name>+'l',, description=<edited description>,
tool, known as inputSchema, parameters and args In two test cases per original o b ety 2 (L s it s
: . args=<args>)
different protocols test case by adding another
* Given only this information, how can LLMs choose tools tool with an identical S
i ? ° . tools:
re"ably' |nterfa Ce bUt an edlted ll:ooi(nar;le=<name>+'l', description=<description>,
* We show that LLI\/Is.can’t rel|a?b.ly select tools when only s.eemg description before & after the ar;zzzizzf;‘;=<name>yzr, description=<edited description>,
the current abstractions, specifically when there are multiple original tool. |

tools with reasonable and similar functionalities described.

Experiments

To begin with, we evaluate different ways to edit tool descriptions on GPT-4.1 and Qwen2.5-7B, and report the Correct Usage Rate of tools.

!Definition' Given a set of test cases and a LLM, we define the correct usage rate for the original (or edited) tools as the fraction of test cases in which the
| LLIVI output consists of at least one call to the original (or edited) tool with correct arguments and no calls to that tool with incorrect arguments. .

Initial Experiments (With a single type of edit)

Here we show results from our initial controlled experiments. By testing both tool orders, we control for ordering bias and isolate the effect of description
edits. The largest or most notable shifts are marked with red dotted boxes.
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Assertive phrasing caused the largest jump—GPT-4.1 chose those tools up to 7x more often.

Maintenance cues like “actively maintained” strongly boosted selection, acting as trust signals.

Brand references (e.g., OpenAl, Google) reliably biased choices toward named tools.

Stacking multiple edits or combined edit—confidence, credibility, and verbosity—produced the strongest overall bias across models.

Edit-vs-edit Competitions

In addition to combined edit, we select the most effective edit in each category. We then compare these edits head-to-head across 17
models spanning different training paradigms (SFT, RL-based and reasoning), open- and closed-source models, and varying model sizes.
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4. Brand cues and numeric claims subtly reinforce credibility and authority bias.

Our key finding is that edits to tool descriptions can substantially shift an LLM’s tool preferences. The core limitation is that Tool descriptions are
decoupled from actual functionality or behavior. One key moving forward is to ground tool selection in historical usage data—by oneself or the
community.
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